Guideline Title

Bibliographic Source(s)

Guideline Status

This is the current release of the guideline.

Recommendations

Major Recommendations

The grades of recommendation (1A–2C) and the approach to rating the quality of evidence are defined at the end of the "Major Recommendations" field.

Diagnosis of Pleural Abnormalities

In patients suspected of having small cell lung cancer (SCLC) based on the radiographic and clinical findings, it is recommended that the diagnosis be confirmed by the least invasive method (sputum cytology, thoracentesis, fine needle aspiration [FNA], bronchoscopy including transbronchial needle aspiration [TBNA]), as dictated by the patient's presentation (Grade 1C).

In patients suspected of having lung cancer, who have extensive infiltration of the mediastinum based on radiographic studies and no evidence of extrathoracic metastatic disease (negative positron emission tomography [PET] scan), it is recommended that the diagnosis of lung cancer be established by the least invasive and safest method (bronchoscopy with TBNA, endobronchial ultrasound-guided needle aspiration [EBUS-NA], endoscopic ultrasound-guided needle aspiration [EUS-NA], transthoracic needle aspiration [TTNA], or mediastinoscopy) (Grade 1C).

In patients suspected of having lung cancer who have a solitary extrathoracic site suspicious of a metastasis, it is recommended that tissue confirmation of the metastatic site be obtained if a FNA or biopsy of the site is feasible (Grade 1C).

In patients suspected of having lung cancer, who have lesions in multiple distant sites suspected of metastases but in whom biopsy of a metastatic...
site would be technically difficult, it is recommended that diagnosis of the primary lung lesion be obtained by the least invasive method (Grade 1C).

In patients suspected of having lung cancer who have an accessible pleural effusion, thoracentesis is recommended to diagnose the cause of the pleural effusion (Grade 1C).

Remark: Ultrasound-guided thoracentesis improves the success rate and decreases the rate of pneumothorax and therefore ultrasound is recommended for performing diagnostic thoracentesis.

In patients suspected of having lung cancer who have an accessible pleural effusion, if pleural fluid cytology is negative, pleural biopsy (via image-guided pleural biopsy, medical or surgical thoracoscopy) is recommended as the next step (Grade 1C).

Remark: If the computed tomography (CT) scan of the chest shows pleural thickening or pleural nodules/masses, image-guided needle biopsy may be considered as the first step to obtain a biopsy of the pleura.

Remark: If pleural cytology is negative after the first thoracentesis, a second thoracentesis has been shown to increase the diagnostic yield of pleural fluid cytology. Depending on preferences and values (a simpler and less invasive test vs a more definitive test) a second thoracentesis may be considered before proceeding to biopsy of the pleura.

Diagnosis of Primary Tumor

Sputum Cytology

In patients suspected of having lung cancer, if sputum cytology is done but is negative for carcinoma, it is recommended that further testing be performed (Grade 1C).

Remark: Sputum cytology is an acceptable method of establishing the diagnosis. However, the sensitivity or sputum cytology varies by location of the lung cancer, and with the frequency and processing of the sputum at each individual center.

Flexible Bronchoscopy

In patients suspected of having lung cancer, who have a central lesion, bronchoscopy is recommended to confirm the diagnosis. However, it is recommended that further testing be performed if bronchoscopy results are non-diagnostic and suspicion of lung cancer remains (Grade 1B).

Remark: In recent years a number of complementary tools including radial endobronchial ultrasound (R-EBUS) and electromagnetic navigation have been added to flexible bronchoscopy to aid in the diagnosis of peripheral lung lesions.

R-EBUS

In patients suspected of having lung cancer, who have a peripheral lung nodule, and a tissue diagnosis is required due to uncertainty of diagnosis or poor surgical candidacy, radial EBUS is recommended as an adjunct imaging modality (Grade 1C).

Remark: Radial EBUS can confirm in real time the ideal location of bronchoscopic sampling and increase the diagnostic yield over conventional bronchoscopy for peripheral nodules.

Electromagnetic Navigation

In patients with peripheral lung lesions difficult to reach with conventional bronchoscopy, electromagnetic navigation guidance is recommended if the equipment and the expertise are available (Grade 1C).

Remark: The procedure can be performed with or without fluoroscopic guidance and it has been found complementary to radial probe ultrasound.

Remark: If electromagnetic navigation is not available, TTNA is recommended.

Transthoracic Needle Aspiration

In patients suspected of having lung cancer who have a peripheral lesion, and who require tissue diagnosis before further management can be planned, TTNA is diagnostic option. However, it is recommended that further testing be performed if TTNA results are non-diagnostic and suspicion of lung cancer remains (Grade 1B).

Cell Type Accuracy

In patients suspected of having lung cancer, the diagnosis of non-small cell lung cancer made on cytology (sputum, TTNA, bronchoscopic specimens, or pleural fluid) is reliable. However, it is recommended that adequate tissue be obtained to accurately define the histologic type and to
perform molecular analysis when applicable (Grade 1B).

Remark: It is critical to obtain adequate tissue to characterize a lung cancer. Within an institution, effective communication between those obtaining the biopsies, those interpreting them, and those delivering the treatment must be in place so that collectively, the members of varying subspecialties involved in the care of the lung cancer patient can decide how best to obtain and optimally use the tissue. If specimens are not adequate for histologic and molecular characterization then obtaining a second biopsy is acceptable given the importance of accurate tumor characterization.

The possibility of an erroneous diagnosis of SCLC on a cytology specimen must be kept in mind if the clinical presentation or clinical course is not consistent with that of SCLC. In such a case, it is recommended that further testing be performed to establish a definitive cell type (Grade 1B).

Definitions:

Strength of the Recommendations Grading System

<table>
<thead>
<tr>
<th>Grade of Recommendation</th>
<th>Benefit vs. Risk and Burdens</th>
<th>Methodologic Quality of Supporting Evidence</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong recommendation, high-quality evidence, Grade 1A</td>
<td>Benefits clearly outweigh risk and burdens or vice versa</td>
<td>Consistent evidence from randomized controlled trials (RCTs) without important limitations or exceptionally strong evidence from observational studies</td>
<td>Recommendation can apply to most patients in most circumstances. Further research is very unlikely to change confidence in the estimate of effect</td>
</tr>
<tr>
<td>Strong recommendation, moderate-quality evidence, Grade 1B</td>
<td>Benefits clearly outweigh risk and burdens or vice versa</td>
<td>Evidence from RCTs with important limitations (inconsistent results, methodologic flaws, indirect or imprecise), or very strong evidence from observational studies</td>
<td>Recommendation can apply to most patients in most circumstances. Higher quality research may well have an important impact on confidence in the estimate of effect and may change the estimate</td>
</tr>
<tr>
<td>Strong recommendation, low- or very-low-quality evidence, Grade 1C</td>
<td>Benefits clearly outweigh risk and burdens or vice versa</td>
<td>Evidence for at least one critical outcome from observational studies, case series, or from RCTs with serious flaws or indirect evidence</td>
<td>Recommendation can apply to most patients in many circumstances. Higher-quality research is likely to have an important impact on confidence in the estimate of effect and may well change the estimate</td>
</tr>
<tr>
<td>Weak recommendation, high-quality evidence, Grade 2A</td>
<td>Benefits closely balanced with risks and burden</td>
<td>Consistent evidence from RCTs without important limitations or exceptionally strong evidence from observational studies</td>
<td>The best action may differ depending on circumstances or patient's or societal values. Further research is very unlikely to change confidence in the estimate of effect</td>
</tr>
<tr>
<td>Weak recommendation, moderate-quality evidence, Grade 2B</td>
<td>Benefits closely balanced with risks and burden</td>
<td>Evidence from RCTs with important limitations (inconsistent results, methodologic flaws, indirect or imprecise) or very strong evidence from observational studies</td>
<td>Best action may differ depending on circumstances or patient's or societal values. Higher-quality research may well have an important impact on confidence in the estimate of effect and may change the estimate</td>
</tr>
<tr>
<td>Weak recommendation, low- or very-low-quality evidence, Grade 2C</td>
<td>Uncertainty in the estimates of benefits, risks, and burden; benefits, risk, and burden may be closely balanced</td>
<td>Evidence for at least one critical outcome from observational studies, case series, or RCTs, with serious flaws or indirect evidence</td>
<td>Other alternatives may be equally reasonable. Higher-quality research is likely to have an important impact on confidence in the estimate of effect and may well change the estimate</td>
</tr>
</tbody>
</table>

Clinical Algorithm(s)

None provided

Scope

Disease/Condition(s)
Lung cancer

Guideline Category
Diagnosis
Evaluation

Clinical Specialty
Family Practice
Oncology
Pulmonary Medicine
Radiation Oncology
Thoracic Surgery

Intended Users
Advanced Practice Nurses
Allied Health Personnel
Health Care Providers
Nurses
Patients
Physicians

Guideline Objective(s)
- To inform the clinical decisions that must be jointly made by physicians and patients in developing diagnostic, treatment, and management plans so that they can enhance the benefits and reduce the harms associated with various options
- To determine the test performance characteristics of various modalities for the diagnosis of suspected lung cancer
- To update previous recommendations on techniques available for the initial diagnosis of lung cancer

Target Population
Patients with suspected lung cancer

Interventions and Practices Considered
1. Sputum cytology
2. Thoracentesis
3. Fine needle aspiration (FNA)
4. Bronchoscopy including transbronchial needle aspiration (TBNB)
5. Endobronchial ultrasound–needle aspiration (EBUS-NA)
6. Endoscopic ultrasound-guided needle aspiration (EUS-NA)
7. Transthoracic needle aspiration (TTNA)
8. Mediastinoscopy
9. Pleural biopsy
10. Computed tomography (CT)
11. Electromagnetic navigation guidance

Major Outcomes Considered

- Sensitivity and specificity of diagnostic tests
- Accuracy of diagnostic modalities (diagnostic error rate)

Methodology

Methods Used to Collect/Select the Evidence

Searches of Electronic Databases

Description of Methods Used to Collect/Select the Evidence

In collaboration with an American College of Chest Physicians (ACCP) methodologist, the writing committee carried out a systematic search of the MEDLINE, Healthstar, and Cochrane Library databases, covering July 2004 (to overlap with the search for the second edition of the guidelines) to July 2011. The searches were limited to English-language and human studies of at least 50 patients with suspected lung cancer, and only studies that provided information on test parameters with an adequate definition of final true results were included (i.e., histologic confirmation or radiographic follow-up of at least 1 year). Both prospective and retrospective studies were included; because of the nature of the subject (diagnostic test), randomized studies were generally not appropriate or were unavailable. Details of the searches for the specific topics are described in the particular section; full details of the searches are available from the ACCP upon request.

To structure the literature search, the following patient, intervention, comparison, outcomes (PICO) questions were selected as the most relevant (see Table S1 in the supporting data [see the "Availability of Companion Documents" field]):

1. How do the test performances of closed, image-guided pleural biopsy and thoracoscopic pleural biopsy compare for evaluating pleural effusions for malignancy in patients with known or suspected lung cancer?
2. What are the performance characteristics of sputum cytology for the diagnosis of lung cancer, with special consideration for the location of the tumor?
3. What are the performance characteristics of flexible bronchoscopy (FB) and its ancillary procedures for the diagnosis of central (endobronchial) as opposed to peripheral tumors and peripheral tumors <2 and >2 cm in size?
4. What are the performance characteristics of radial endobronchial ultrasound (R-EBUS) as a diagnostic modality for peripheral lung cancer?
5. What are the performance characteristics of electromagnetic navigation (EMN) in the diagnosis of a peripheral lung lesion (PLL)?
6. What are the performance characteristics of transthoracic needle aspiration (TTNA) as a diagnostic modality, with particular emphasis on the size and location of the suspected cancer?
7. What is the diagnostic error when differentiating between non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) generated by various diagnostic techniques (bronchoscopy, TTNA, and sputum cytology)?

Number of Source Documents

Not stated

Methods Used to Assess the Quality and Strength of the Evidence

Weighting According to a Rating Scheme (Scheme Not Given)
Rating Scheme for the Strength of the Evidence

Not stated

Methods Used to Analyze the Evidence

Review of Published Meta-Analyses

Systematic Review with Evidence Tables

Description of the Methods Used to Analyze the Evidence

Assessment of Study Quality

Systematic reviews and meta-analyses were assessed using Documentation and Appraisal Review Tool (DART) (R. L. Diekemper; B. K. Ireland, MD; and L. R. Merz, PhD, MPH, DART, unpublished data, 2012), which was developed as an improved alternative to the existing tools for use in a clinical setting. However, this tool has been adopted for use in American College of Chest Physicians (ACCP) guidelines and consensus statements since 2011.

Quality was assessed for each study as well as for the body of relevant evidence. Based on the population, intervention, comparator, and outcome (PICO) questions and volume of available literature, multiple study designs were included in the systematic reviews of the literature. Randomized controlled trials (RCTs) primarily indicate benefits, but whenever observational studies met inclusion criteria they were often helpful in identifying harms. Observational studies were also examined when RCTs were not available to answer a particular PICO question. Allowing for multiple study designs resulted in the need for multiple quality assessment tools. Tools were chosen for assessing RCTs, observational studies, and diagnostic studies. The quality assessment tool for RCTs (R. L. Diekemper, B. K. Ireland, and L. R. Merz, unpublished data, 2012) was used for assessing the quality of RCTs, and a tool developed by the committee of the ninth edition of the Antithrombotics Guidelines was used for assessing the quality of observational studies. Diagnostic studies were assessed using the Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS).

Meta-analyses

If a recently published good-quality meta-analysis was available, then it was used to inform the recommendations. When a good-quality meta-analysis was not available, guideline authors were encouraged to perform their own meta-analyses. Meta-analyses were performed when the data were fairly homogeneous. If a study was deemed poor quality, then it was not included in the pooled analysis. Heterogeneity of the pooled results was assessed using a χ^2 test and Higgins I^2, and a forest plot was examined for consistency of the results. The random effects model was chosen a priori as the appropriate model for pooling the data because it accounts for heterogeneity among the included studies. Results from the meta-analyses are available in the supplementary materials that can be downloaded from the Journal website under the corresponding article in the table of contents.

Methods Used to Formulate the Recommendations

Expert Consensus

Description of Methods Used to Formulate the Recommendations

Panel Composition and Responsibilities

A call for applications to serve on the 3rd edition of the American College of Chest Physicians (ACCP) Lung Cancer Guidelines (LC III) panel was put forth to the ACCP membership, to past panelists, and to other organizations that have previously endorsed earlier editions of these guidelines or appointed representatives to serve on those panels. Guiding the team was the LC III Executive Committee, composed of a Panel Chair, Vice Chair, Liaison to the Guidelines Oversight Committee (GOC), and two staff members, one serving as an adviser and the other as the lead methodologist. The GOC appointed the Liaison and the Chair, who was required to be free of conflicts of interest (COI). This Executive Committee provided general oversight and guidance; multiple reviews of research questions, article outlines, manuscripts, evidence tables, and other supporting documents; and facilitation of the final conference discussions and voting. As the scope was defined, content experts in each
Formulating the Recommendations

In most cases the topic editors, along with the other completely non-conflicted members of the article committee, formulated the recommendations. The summarized evidence tables and profiles (where profiles existed) provided the foundation for the recommendations. In formulating the recommendations, panelists considered not only the body of evidence but also the balance between the benefits and harms and considerations of other factors, such as cost or resource availability considerations and patient values and preferences, which might vary widely for some recommendations. These additional considerations are described in a Remarks section, which appears just below the relevant recommendation in the publication, each time the recommendation appears.

Grading the Recommendations

Recommendations that are strong must be differentiated from those that are weak or weaker. Thus, the ACCP Grading System was used (see the "Rating Scheme for the Strength of the Recommendations" field), and the wording of the recommendations is explicit. This grading system has been used since 2005 and is based on two dimensions: the balance of benefits to harms and the quality of the evidence base. If the benefits clearly outweigh the harms or the harms clearly outweigh the benefits, the strength of the recommendation is considered strong and graded as a 1. In most cases, when there is strong confidence that the benefits outweigh the harms, most patients would choose the intervention endorsed in that recommendation. However, when the tradeoffs between desirable and undesirable consequences are not as clear, variability in patient preferences and values often becomes germane to the decision-making conversation.

Weak recommendations are those for which the benefits and harms are more equally balanced, and thus a clear choice is not as obvious; these are graded with a 2. Strong recommendations are phrased, "the panel recommends," whereas weak recommendations are phrased "the panel suggests." Accompanying these indications of the strength of a recommendation is a letter score (A, B, or C) representing the grading of the body of relevant literature.

In grading the quality of the evidence, RCTs start with a high score but might be downgraded to moderate or even low based on the following criteria: limitations in the study design or conduct of the trial, imprecision, indirectness relative to the specifics of the PICO question, inconsistency in the results, and risk of reporting bias. Observational studies, on the other hand, start off as low-level evidence but can be upgraded to moderate or even high if exceptionally large and consistent treatment effects increase confidence in the findings, especially if there is a strong dose-response gradient.

The final grades are combinations reflecting the strength of the recommendation and the quality of the evidence. Strong recommendations with high quality evidence, grade of 1A, are less common than in past editions of these guidelines, since the evidence is assessed with greater rigor for most topics, and few studies without important limitations are available.

However, recommendations that do attain this score are those for which the panel could state with confidence that new studies would be unlikely to change the direction of the effect. These recommendations apply to most patients in most circumstances. But as the grades decline, patient values and preferences likely would play an increasingly greater role in determining the best treatments or interventions for each patient.

The Final Conference

As the evidence reviews were completed and the tables and profiles prepared, the manuscripts and recommendations were drafted. Members of the article committees convened by phone or e-mail to discuss the evidence and work on drafting and grading the recommendations. These discussions generally resulted in agreement on both the quality of the evidence and strength of the recommendations.
The manuscripts and supporting tables were then reviewed by members of the Executive Committee and, after several iterations, the revised versions were shared among all panelists and the representatives of invited organizations in advance of the conference. The other panelists and representatives were asked not only to provide feedback but also to review the recommendations to identify any controversies. A recommendation was deemed to be controversial if at least one person disagreed with the wording or the grading, if there was controversy in practice, if there were wide variations in practice, or if at least one person asked that it be discussed among the broader panel and association representatives. These identified controversies composed the main agenda for the conference.

See the "Methodology for Development of Guidelines for Lung Cancer" (see the "Availability of Companion Document" field) for more information.

Rating Scheme for the Strength of the Recommendations

<table>
<thead>
<tr>
<th>Grade of Recommendation</th>
<th>Benefit vs. Risk and Burdens</th>
<th>Methodologic Quality of Supporting Evidence</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong recommendation, high-quality evidence, Grade 1A</td>
<td>Benefits clearly outweigh risk and burdens or vice versa</td>
<td>Consistent evidence from randomized controlled trials (RCTs) without important limitations or exceptionally strong evidence from observational studies</td>
<td>Recommendation can apply to most patients in most circumstances. Further research is very unlikely to change confidence in the estimate of effect</td>
</tr>
<tr>
<td>Strong recommendation, moderate-quality evidence, Grade 1B</td>
<td>Benefits clearly outweigh risk and burdens or vice versa</td>
<td>Evidence from RCTs with important limitations (inconsistent results, methodologic flaws, indirect or imprecise), or very strong evidence from observational studies</td>
<td>Recommendation can apply to most patients in many circumstances. Higher-quality research may be likely to have an important impact on confidence in the estimate of effect and may well change the estimate</td>
</tr>
<tr>
<td>Strong recommendation, low- or very-low-quality evidence, Grade 1C</td>
<td>Benefits clearly outweigh risk and burdens or vice versa</td>
<td>Evidence for at least one critical outcome from observational studies, case series, or from RCTs with serious flaws or indirect evidence</td>
<td>Recommendation can apply to most patients in many circumstances. Higher-quality research is likely to have an important impact on confidence in the estimate of effect and may well change the estimate</td>
</tr>
<tr>
<td>Weak recommendation, high-quality evidence, Grade 2A</td>
<td>Benefits closely balanced with risks and burden</td>
<td>Consistent evidence from RCTs without important limitations or exceptionally strong evidence from observational studies</td>
<td>The best action may differ depending on circumstances or patient's or societal values. Further research is very unlikely to change confidence in the estimate of effect</td>
</tr>
<tr>
<td>Weak recommendation, moderate-quality evidence, Grade 2B</td>
<td>Benefits closely balanced with risks and burden</td>
<td>Evidence from RCTs with important limitations (inconsistent results, methodologic flaws, indirect or imprecise) or very strong evidence from observational studies</td>
<td>Best action may differ depending on circumstances or patient's or societal values. Higher-quality research may well have an important impact on confidence in the estimate of effect and may well change the estimate</td>
</tr>
<tr>
<td>Weak recommendation, low- or very-low-quality evidence, Grade 2C</td>
<td>Uncertainty in the estimates of benefits, risks, and burden; benefits, risk, and burden may be closely balanced</td>
<td>Evidence for at least one critical outcome from observational studies, case series, or RCTs, with serious flaws or indirect evidence</td>
<td>Other alternatives may be equally reasonable. Higher-quality research is likely to have an important impact on confidence in the estimate of effect and may well change the estimate</td>
</tr>
</tbody>
</table>

Cost Analysis

American College of Chest Physicians (ACCP) guidelines include consideration of resources in recommendations under selected circumstances. If it is likely that resource considerations would impact the direction or strength of a recommendation, a search for cost-effectiveness studies may have been conducted. Most recommendations in these guidelines do not include a full assessment of resource considerations. However, they can be adapted to middle- and low-income countries using the ADAPTE strategies.
Method of Guideline Validation

External Peer Review
Internal Peer Review

Description of Method of Guideline Validation

Internal and External Peer Review

Once Executive Committee approval was received, the articles were submitted to American College of Chest Physicians (ACCP) staff for several layers of review. All reviewers were required to undergo a full conflict of interest (COI) appraisal before being approved. In the first round of reviews, the Thoracic Oncology NetWork reviewed the content of the manuscripts and the members of the Guidelines Oversight Committee (GOC) assessed the manuscripts for adherence to the methodology and conformance with the evidence. The ACCP President also appointed members of the Board of Regents to evaluate the guidelines in depth. All comments were collated into spreadsheets to ensure that they were appropriately answered. GOC and board reviewers discussed each comment and determined which should be mandatory for the authors to amend and which were provided as suggestions for improvement. All reviews and comments were anonymous, and authors were required to respond to all mandatory issues either by revising the manuscripts or providing written justification explaining why they did not agree with the reviewers’ comments.

The revised manuscripts were submitted for round II review, simultaneously with the Journal peer review. Once the GOC and board reviewers approved the manuscripts, the ACCP President, President Elect, President Elect Designee, and Immediate Past President reviewed the guidelines. Approval was granted pending confirmation from the Board of Regents, before submission to the journal for final review by the Journal Editor. In addition to this extensive review process, which included nearly 30 individual reviewers from the ACCP leadership, external organizations were provided with opportunities to provide feedback before, during, and just after the conference. This final version was submitted for consideration for endorsement to all of the invited organizations, whether or not they sent representatives to the conference. However, once the guidelines were approved by the ACCP Board of Regents, no further changes were accepted. Organizations that provided endorsements are listed in each article.

Evidence Supporting the Recommendations

Type of Evidence Supporting the Recommendations

The type of supporting evidence is identified and graded for each recommendation (see the "Major Recommendations" field).

Benefits/Harms of Implementing the Guideline Recommendations

Potential Benefits

Appropriate establishment of the diagnosis of lung cancer

Potential Harms

- False-positive and false-negative results of diagnostic tests
- Data on complications after transthoracic needle aspiration (TTNA) are limited to case series from selected institutions. A cross-sectional analysis of 15,865 adults who had undergone TTNA was performed to determine the risks of complication after TTNA of a pulmonary nodule. Hemorrhage complicated only 1% (95% confidence interval [CI], 0.9%–1.2%) of biopsies, but of these, 18% (95% CI, 12%–24%) required a blood transfusion. In contrast, the risk of any pneumothorax was 15% (95% CI, 14%–16%), and 7% (95% CI, 6%–7.2%) of all biopsies resulted in pneumothorax requiring a chest tube.

Qualifying Statements
Qualifying Statements

- American College of Chest Physicians (ACCP) guidelines are intended for general information only, are not medical advice, and do not replace professional medical care and physician advice, which always should be sought for any medical condition. The complete disclaimer for this guideline can be accessed at the CHEST Web site.
- Although the ACCP is moving toward the production of evidence profiles for all guideline recommendations, there were many recommendations for which profiles were not developed, mostly because of resource constraints. When possible, methodologists created evidence profiles, and all panelists were educated on how to read and interpret them. The population, intervention, comparator, and outcome (PICO)-based systematic literature review process was followed for most recommendations, but there were some that could have benefited from meta-analyses.
- One limitation of all guidelines today is that they are not able to adequately address complex patients with multiple morbidities. This is largely because these patients are generally excluded from clinical trials and are often not included in observational studies. Since guidelines are reliant on evidence published in the peer-reviewed literature, the scientific foundation impedes the process of providing good guidance for these patients and is a limitation in these guidelines. Therefore, the ACCP encourages funding agencies to ensure that topics with limited evidence are addressed in future research.

Implementation of the Guideline

Description of Implementation Strategy

Dissemination and Implementation

These guidelines are widely disseminated through the CHEST journal publication, National Guideline Clearinghouse, and Guidelines International Network library. Additional clinical resources will soon be available to users of CHEST Evidence, an upcoming tool for searching the content of America College of Chest Physicians (ACCP) guidelines.

As the expanding research into diagnostic techniques and treatment options continues to evolve, the guidelines must be updated and kept current. This edition of the ACCP Lung Cancer Guidelines will be the last to be published as a complete collection, as the ACCP is now embarking on a new living guidelines model (LGM) for revising existing recommendations and developing new recommendations as the literature evolves. This will include a continual assessment of the currency of these recommendations relevant to new research studies as they are published. The review cycle for the ACCP Lung Cancer Guidelines will begin 1 year after publication unless the content experts who monitor the literature bring a recommendation or set of related recommendations to the attention of the Guideline oversight Committee (GOC), suggesting that those recommendations are in need of updating sooner. The new LGM will permit a more nimble approach to guideline development but also requires a point-of-care accessible vehicle, CHEST Evidence, for the users to readily search for the most current version. These features will be described in greater detail in upcoming publications. As a step in this direction, these guidelines will be published primarily online with a printed version of the Executive Summary, containing all of the recommendations, the introduction, and this article on methodology. All narratives for each article with their supporting tables, figures, and algorithms will be available online at journal.publications.chestnet.org.

Implementation Tools

Mobile Device Resources

Patient Resources

Quick Reference Guides/Physician Guides

Resources

For information about availability, see the Availability of Companion Documents and Patient Resources fields below.

Institute of Medicine (IOM) National Healthcare Quality Report
Categories

IOM Care Need
Living with Illness

IOM Domain
Effectiveness
Patient-centeredness

Identifying Information and Availability

Bibliographic Source(s)

Adaptation

Not applicable: The guideline was not adapted from another source.

Date Released

2003 Jan (revised 2013 May)

Guideline Developer(s)

American College of Chest Physicians - Medical Specialty Society

Source(s) of Funding

- The development of this guideline was supported primarily by the American College of Chest Physicians (ACCP). The lung cancer guidelines conference was supported in part by a grant from the Lung Cancer Research Foundation. The publication and dissemination of the guidelines was supported in part by a 2009 independent educational grant from Boehringer Ingelheim Pharmaceuticals, Inc.
- Role of sponsors: The ACCP was solely responsible for the development of these guidelines. The remaining supporters played no role in the development process. External supporting organizations cannot recommend panelists or topics, nor are they allowed prepublication access to the manuscripts and recommendations. Further details on the Conflict of Interest (COI) Policy are available online at chestnet.org.

- See the methodology companion (see the "Availability of Companion Documents" field) for a complete discussion of the source of funding for this guideline.

Guideline Committee

American College of Chest Physicians (ACCP) Expert Panel on Lung Cancer Guidelines
Composition of Group That Authored the Guideline

Authors: M. Patricia Rivera, MD, FCCP; Atul C. Mehta, MBBS, FCCP; Momen M. Wahidi, MD, MBA, FCCP

Financial Disclosures/Conflicts of Interest

- Conflicts of Interest (COI) grids reflecting the conflicts of interest that were current as of the date of the conference and voting are posted in the online supplementary materials.
- Financial/nonfinancial disclosures: Dr Rivera has served on an advisory board for Boehringer-Ingelheim. Dr Mehta has served as a consultant for superDimension, Inc. Dr Wahidi has received educational grants from Olympus America, Inc and Pentax, Inc. He has also served as a consultant with Olympus America, Inc and Veran Medical Technologies.
- See the methodology companion (see the "Availability of Companion Documents" field) for a complete discussion of the conflict of interest procedures and requirements for the guideline panel.

Guideline Endorser(s)

- American Association for Bronchology and Interventional Pulmonology - Medical Specialty Society
- European Society of Thoracic Surgeons - Professional Association
- Oncology Nursing Society - Professional Association
- Society of Thoracic Surgeons - Medical Specialty Society

Guideline Status

This is the current release of the guideline.

Guideline Availability

Available to subscribers of [Chest - The Cardiopulmonary and Critical Care Journal](#). Also available to Chest subscribers through the Chest app for iPhone and iPad.

Print copies: Available from the American College of Chest Physicians, Products and Registration Division, 3300 Dundee Road, Northbrook IL 60062-2348.

Availability of Companion Documents

The following are available:

- Zelman Lewis S, Diekemper R, Addrizzo-Harris DJ. Methodology for development of guidelines for lung cancer: diagnosis and